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1 Introduction

Stochastic programming is large part of the theory of optimization in which the problems
with random parameters occur. We search for solutions of such problems, investigate their
properties and properties of the problems themselves. All mentioned is important especially
in cases in which the randomness cannot be neglected. To begin our investigation at a
mathematically correct base let us start with a formal description of the uncertainty in
mathematical programming.

Consider the following general optimization problem

minimize ¢(x; &) subject to x € X, f(x;8) <0 (1)

where £ € R® is a data element of the problem, x € X C R" is a decision vector, the
dimensions n, s, m, and the mappings c¢: R” x R®* — R and f: R" x R®* — R™ are structural
elements of the problem. For our purpose, we extend the description of the framework by
the following characterization:

1. The knowledge of the data is insufficient (uncertain). All that is known about the
data vector £ (at least at the very beginning) is that it belongs to a given uncertainty
set = C R®.

2. The objective function of (1) is required to be the best possible given the actual
realization (instance) of £ € E.

3. The constraints of problem (1) are required to be satisfied as much as possible given
the actual realization of ¢ € =.

If the realization of ¢ is known and fixed in advance (before the decision has to be
taken), and the elements of the problem have suitable properties, standard algorithms of



deterministic optimization can be used to solve problem (1) (for example convex progra-
mming). But in practice, uncertainty of the data is typical property and inevitably has to
be considered during the course of building the modelling framework. There are several
approaches to deal with uncertainty.

1. Sensitivity analysis. This is a traditional way to deal with uncertainty. At the
stage of building and solving the optimization problem, the uncertainty is simply
ignored and the data is replaced by some nominal value. The accuracy of the optimal
solution is inspected ex-post for a single, generated solution and it is limited only to
small perturbations of the nominal data.

2. Parametric programming. The uncertainty is introduced to the model via a pa-
rameter — member of a specified parametric space.

3. Stochastic programming. Stochastic programming handles the uncertainty of sto-
chastic nature: we consider ¢ in (1) to be a random vector and assume that we are
able to identify its underlying probability distribution. The idea of stochastic pro-
gramming is to incorporate available information about data through its probability
distribution and solve the modified, deterministic problem.

4. Robust programming. Techniques of robust programming are looking for a solution
to optimization program (1) that satisfies its constraints for all possible realizations
of &, i.e., that is feasible for any member of the problems belonging to the family (1).

The dissertation thesis deals with some questions of stochastic and partly of robust
programming. It is divided into three main parts. The first part is devoted to the stability
in stochastic programming problems, involving the necessary theoretical background on
probabilistic metrics and the survey of literature. This part ends with Chapter 5 concer-
ning approximations in stochastic programming. Second part numbered as Chapter 6 deals
with convexity in chance-constrained problems, especially for the case of weakly dependent
constraint rows. Last part of the thesis, Chapter 7, compares stochastic and robust progra-
mming as the two disciplines solving one original optimization problem by different means.
The results of the thesis are published by the author’s proceedings and papers, the list of
publications is included.

2 Stochastic programming problems

A stochastic programming problem can be introduced in the following general formulation:

inf / Fy(z; &) p(d€) subject to [ﬂ(m,f) u(dé) <0, j=1,...,d (2)

zeX

In addition to general assumptions from (1), we assume that = C R® is a closed set,
i € P(Z) is a probability measure with support Z, X is a closed set not depending on
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p, Fj: R" x 2 — R are for all j = 0,...,d extended real random lower semicontinuous
functions.
In what follows we use the following notation:

0G0 = {2 € X5 [ Folai € n(a9) = ot .

Here, X (1) is the set of constraints, ¢(u) is the optimal value and ¢ (u) is the optimal
solution set of the problem (2). Different classes of stochastic programming problems, fall
into this general framework.

Recourse (penalization) problems falls into the frame (2) with d = 0; the problem
constraints do not exhibit any probabilistic nature and the problem reduces to

inf. [ Fifas6) na9) 3)
In the usual application framework, the function Fj is split up into two parts. The first-
stage objective function c(x) does not depend on ¢ and gives us the (first stage) deci-
sion x. After some decision x is chosen, random variable £ is realized and some com-
pensation/penalization action is taken evaluated by the cost function Q(z;¢) taken into
consideration in the first stage decision through its expected value:

1nf( /ng d§) (4)

where ¢: R” — R, and Q: R x R* — R The cost function Q is usually given by a second-
stage optimization problem depending on the realization of £ as well as on the first-stage
decision . Many possible variants of Qare examined by stochastic programming.

Chance-constrained programming problems (in their default form) consider d = 1
and set Fy(z;€) = c(x) where ¢: R — R. Further, let H : R" = R® be a multifunction
representing stochastic constraints of the problem, and

Fi(z;6) == p — Xu@)(&),

with p € [0; 1] being a prescribed probability level, and y 4(-) the characteristic function of a
set A. The easy transformation of (2) leads to the formulation of (joint) chance-constrained
programming problem:

min c(x) subject to z € X, u(H(z)) >p (5)

There are also more complicated models falling into the frame of (2) and involving
probabilistic terms can be formulated; there is some possibilities mentioned in the thesis.
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Almost all methods of stochastic programming rely on the fact that the distribution p is
known and fixed in advance. In practice, this is not the case, the true distribution is rarely
completely known and some kind of approximation or statistical estimates of i should be
used. Mathematically, we replace the “original” distribution p by the “new” one denoted v.
The key question of the theory of stability is how the optimal value and optimal solution of
(2) change in this case. We can split up such large question into several areas of interest: in
qualitative stability we are looking for suitable qualitative properties of the optimal value
and the optimal solution set, such as (semi-) continuity, differentiability, or persistence.
Quantitative stability tries to quantify previous properties, for example to find a convenient
upper bounds for |p(u) — ¢(v)| and D(v(u),1(v)) where D is suitably selected set-
distance. More formally we look for functions m,, m, having convenient properties (e.g.
Lipschitz, Holder continuity, etc.) such that

() — @(v)] od(p, 1))
D (), () < my(d(p, v))

where d is some function measuring “difference” between distributions p and v. Natural
question arises: how to measure (quantify) the “difference” between two distributions, the
question is examined in Chapter 3.

<m
<m

3 Probability metrics

Denote P(Z) the space of all probability measures defined on = C R® and Pr C P(E)
some of its subset depending on a chosen class F of nonlinear real functions defined on
=. Natural choice of a distance for the general stochastic programming problem (2) is a
distance that uniformly compares expectations on a variety of nonlinear function F. Such
distance is defined for u,v € Pr by

dr(j1,v) == sup
FeF

[ F©uta - [ Fewas) )

and known as the distance having (-structure or Zolotarev pseudometric on the space Pr

of probability measures. dr is always a pseudometric; if it has finite value and the class F

is rich enough to ensure that dz(u,v) = 0 implies ;1 = v, then it is a metric on Pg.
Consider an open set U C R™ and define the class of functions

Fu = {Fj(;z:;~):x€XﬂclU, ij,...,d}



and the space of probability metrics corresponding to Fy; as
Pr,(E) = {V eP(E):

—00 < / inf Fj(z;€)dv(€) for each r > 0,

zeXNrB

sup /Fj(x;g)dy(ﬁ) < +oo for each j =0,... ,d}.

zeXNclU

—_
—

The conditions on v in Pz, (=Z) are such that expectations in (6) exist and are finite so the
distance is well defined.

Definition 1. The distance

dron) = sw | [ @ - [ Ao
sexpdu " -

is called minimal information (m.i.) metric.

The distance dz, is a distance having (-structure. It is the “minimal distance” for the
stability of the model (2) in sense that it takes information only from specific properties
of the functions Fj. General stability theorems deal with this probability distance.

Minimal information metric is difficult to handle. In order to find more friendly results
we look for another distance having (-structure by enlarging the class F and thus bounding
dz, from above. Sometimes, it is also necessary to reduce the class Pr of acceptable pro-
bability measures to ensure existence and finiteness of expectations. The common strategy
of constructing an enlarged class F;,4 is such that F;,; contains all the functions CFj(x;-)
for all x € X NclU and some C' > 0 and share some typical analytical properties of Fj.
We call such probability metric as an ideal probability metric for the predefined class of
stochastic programming problems.

Recourse functionals exhibit often a local Lipschitz property. For example, we define
the class of 1-Lipschitz continuous functions as
Fr:=A{F:Z— R: L (F) <1} where L(F) is a usual Lipschitz constant of the function
F. Denote further P;(Z) the class of probability measures having finite the first absolute
moment, and let u, v € P;(Z) We define so-called Wasserstein metric by

Wi v) = dp, = | / F(€)u(de) - / F(&)(de)].

Wasserstein metric is a distance that has (-structure and is ideal for recourse problems
where recourse functional is Lipschitz continuous. In one-dimensional space, the calculation
is simple, as it simplifies to

+o0
Wi (s v) = / F(t) - G(1)dt.

e}
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But the distance and the results do not work well with distributions having heavy tails;
the example is given in the thesis.

General recourse functionals can grow faster than linearly; then the generalized notion
of p-th order Lipschitz continuity applies resulting in p-th order Fortet-Mourier metric ¢,
used by more complicated recourse models (for example multistage programs); Wi (u,v)
coincides with (i (p, ).

For chance-constrained problems (c.f. (5)), B-discrepancies (or a-metrics) apply.
Consider a class B = B(Z) of Borel subsets of = such that it contains all multifunctions H;
(i.e., constraint multifunctions; in (5), we consider only j = 1). We defineF = F := {x5 :
B € B} Due to the nature of indicator function x the corresponding class of convenient
probability measures is the whole set P(Z). The distance

ap = dp; = sup|u(B) — v(B)|
BeB
is called a-(pseudo-)metric or, B-discrepancy. A specific distance can be defined according
to the nature and properties of H;(x); for example, polyhedral discrepancy, half-space
discrepancy.
A special case of B-discrepancy distance can be formed starting from a problem with
random right-hand side only:

min ¢’z subject to x € X, u{€ € Z;9(x) > &} > p

where = C R?) g: R" — R®, p € [0; 1]. The corresponding class B is formed by s-dimensional
“semi-closed intervals” Bk (Z) := {(—o00;¢],& € Z}. The corresponding B-discrepancy is
called Kolmogorov or Kolmogorov-Smirnov metric; it is simply the difference of probability
distributions functions F', G corresponding to u, v:

K(p,v) = sup |u(B) —v(B)| = sup|F(z) — G(2)|.

BeBk(E) zZ€E

A considerable advantage of this metrics is the computational simplicity when it is applied
to workaday optimization problems. Hence, it is often used in practice instead more sophis-
ticated distances even it is not always an ideal metric. On the other hand, the Kolmogorov
metric is not good choice when we deal, for example, with approximation of unknown mass
points of a discrete distribution. But it deals well with distributions having heavy tails.



4 Stability in stochastic programming
problems

Before stating a general stability theorem we need some additional notions to be defined.

Consider a nonempty open set U C R™, v € Pg,(Z), and denote

Xy(v) = {xechlU:/_Fj(x;g) v(d¢) <0, jzl,...,d}

pu(v) = inf / Fol; )w(de) (7)

zeXy (v)
o) i={o e Xuw): [ Falaigma9) = o)}
Definition 2. A nonempty set S C R" is called complete local minimizing (CLM) set of
the optimization problem (7) relative to U if S = ¢y (v) C U.

Definition 3. Let (P,d) be a (semi-) metric space. We say that a set-valued mapping
S: (P,d) = R" is (Berge) upper semicontinuous at the point pu € P if for every open set
O C R" with S(p) C O it holds that S(v) C O for each v € P with sufficiently small value
of d(p,v).

Definition 4. For 7 > 0 we define the growth function by

¥, () := min {/ﬁ Fo(z; O)p(dg) — p(p) : dist(z;0(p)) > 7, x € XU(M)}

and the associated growth function by W, (n) :=n+ ¢, (2n), n € Ry, where ¢, (2n) :=
sup{T > 0:¢,(7) < 2n}.

Special constructions of growth functions are known under their names of linear or
quadratic growth. Stronger growth conditions are also used, as strong convexity condition.

Definition 5. Given some subset U C R"”, the function ¢: R” — R is said to be strongly
convez if there exists some x > 0 such that for all z;, 2, € U and all X € [0;1],

ez + (1= N)az) < Ae(z1) + (1 — Ne(xg) — %Fd)\(l — A)||z1 — 2|7

In problems with probabilistic constraints the stability property for constraint sets X ()
are needed. To state it we will use a notion of the special metric regularity condition as
introduced in Rockafellar and Wets [12], Section 9.G.

Denote

X i={oe X [ Boua <. i=1.... ]

X, () ={yeR 1z e X,(n)}
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Definition 6. We say that the mapping = — X_*(u) is metrically reqular at some pair
(z,0) € R" x RY, 7 € Xo(u) if there are a > 0 and £ > 0 such that for all x+ € X and
y € R? with ||z — 7| < e and .Iriaxd|yj| < ¢ it holds that

=15

i, ) < @ e wa {0, [ £ 9(a9) 1} (®)
J=40 =

We are now ready to formulate a general stability theorem for the problem (2); the
theorem was introduced in Henrion and Rémisch [5].

Theorem 1 (Henrion and Rémisch [5]). Consider the stochastic programming problem
(2) with its general assumptions. Let P € Pg, and assume that ¥(u) # 0, U is open
bounded neighbourhood of (1), © — [z Fo(ax;£)p(dE) is Lipschitz on XNelU ifd > 1, and
x — X Y(n) is metrically regular at each pair (z;0), z € ¥(u). Then vy : (Pr,,dr,) = R™
is (Berge) upper semicontinuous at u, and there exist § > 0, L > 0, L > 1 such that for
v € Pr,(2), dr,(p,v) < 0, we have that

lou(p) — wv (V)| < Ldg, (1, v)
Yy (v) # 0 and it is a CLM set wrt. U

Yu(v) () + W, (L, (1.v)) B

This general theorem states several stability results in one with respect to the mini-
mal information metric. Different estimates for upper bounds with more suitable metrics
than the last for specific structures of stochastic programming problem are derived in the
literature.

Early stability results for recourse problems was obtained with the S-metrics applied.
Later, the assumptions have been weakened and better — Lipschitz estimates with the
Wasserstein metric have been obtained. The case of the complete linear recourse is studied
in Romisch and Schultz [13]. The following theorem is a possible non-linear modification
based on these results. Further, the continuity properties and compactness ensure existence
and boundedness of optimal solution of the original (unperturbed) problem and, at the
same time, we can leave out the localization property.

Theorem 2 (Houda [7],Houda [8]). Consider the program (3), where the following as-
sumption are fulfilled: X 1is a compact set, the function Fy is uniformly continuous on
R™ x R*, and Fy(x;-) is Lipschitz continuous for all x € X with constant L not depending
on x. Then 1 is (Berge) upper semicontinuous at p with respect to (P1(E), W1), and for
any v € P1(ZE) we have that (v) # 0 and

() — (V)| < LWi(p,v).

Quantitative stability of optimal solution sets can be achieved by direct application of
Theorem 1. Stringent assumptions as the strong convexity condition were also used earlier
in the literature; generally, such bounds are not the best but could have better computation
aspects.

11



Theorem 3 (Houda [7], Katikovd and Houda [10]). Let assumptions of Theorem 2 be
fulfilled. Let X be convexr and for all & € = let Fy(-;€) be strongly convex on R™ with
parameter k > 0. Then

9() — I < LW (s,0) )

Stability results for chance constrained programs are direct corollaries of Theo-
rem 1 where appropriate B-discrepancies are applied. The crucial assumption is the metric
regularity; specific conditions implying the metric regularity are examined in context of
chance-constrained programming by several authors. For example, consider a (possibly)
nonlinear chance-constrained program with random right-hand side only:

rg(x) =& = p (10)

where g: R — R® ¢: R" — R, and p € [0;1]. X and = is assumed to be as in the general
stochastic programming model.

(1]

min ¢(z) subject to x € X, u{¢ €

Theorem 4 (Henrion [4]). In (10), assume ¢ convex, X closed and convez, g having
concave components, and i € P(Z) is r-concave for some r < 0. In addition, assume
that ¢ (u) is nonempty and bounded, and there exists some & € X such that F,(g(Z) > p
where F), is the distribution function of u (Slater condition). Then 1(-) is (Berge) upper
semicontinuous at pi, and there exist constants L,0 > 0 such that for any v € P(Z) with

K(u,v) < 6 we have that ¥ (v) # 0 and

() — (V)| < LEK(p, v).

The Slater condition and convexity assumptions ensure the metric regularity condition
from the general theorem. Applying a strong convexity condition one can arrive at the
stability of optimal solution set that will be of Holder type.

5 Approximations in stochastic programming
problems with recourse

Recall the bound of Theorem 2 concerning optimal values of the problems

() — ()| < LWi(p,v). (11)

Our motivation here is the following: we see the stability bound “double structured”: the
Lipschitz constant, representing the model structure itself; and the randomness expressed
by the value of the Wasserstein metric.

If the probability measure pu, needed for succesful solution of the stochastic optimization
problem, is not available, but we have empirical data at our disposition we can use them in-
stead and replace the original distribution with the empirical version. Let &1, &, ..., &N, - ..
be independent random variables with the same probability distribution p. For notation
simplicity, we denote its distribution function by F' instead of F),.

12



Definition 7. The random function

N
1

Fn(t) =+ ;X(—w;t}(fi), teR (12)

is called empirical distribution function based on the sample &,...,&yN; xa is again

the characteristic (indicator) function of the set A.

For each realization of the sample, Fiy(t) is actually a distribution function; we denote
associated probability measure as pux and call it empirical measure. By Glivenko-Cantelli
theorem and the law of large numbers, a sequence of empirical distribution functions Fly
converges almost surely to the distribution function F' under general conditions as N goes
to infinity. Considering the definition of the Wasserstein and Kolmogorov metric, values of
these metrics for ' and F)y converge too.

One-dimensional Wasserstein metric involves integral computation of difference between
distribution functions. To find its convergence rate at infinity we are interested in behaviour
of the associated empirical process.

Definition 8. The integrated empirical process is defined by

“+o00

VN W iy, 1) = VN |Fy(t) = F(t)| dt. (13)

Definition 9. A stochastic process U is called Brownian bridge if it is continuous Gaus-
sian process having mean function EU(f) = 0 and covariance function cov(U(s), U(t)) =
min(s,t) — st where s,t € [0;1].

We find the Brownian bridge as the (weak) limit of the integral (13) in case of the
uniform distribution on [0; 1] (see Section 3.8 of Shorack and Wellner [14]):

—+00

/:o VN ’% i X(—ocit) (&) — t’ dt —q / |U(¢)|d¢ (14)

—00

In this case the probability distribution of the limit of (14) is also known explicitly. To find
a weak limit for distributions that are not uniform is not so easy. The Inverse Theorem
with a simple substitution does not suffice because one has to involve the derivative of
F(z) into consideration. The condition under which the convergence is valid was found by
del Barrio et al. [3].

Proposition 5 (del Barrio et al. [3], Theorem 2.1). The limit theorem
VN(Fn(t) = F(t)) =4 U(F(t)) in Li(R) is valid if and only if
[T V/F) (1 - F(t)dt < +o0

From this it easily follows that, under the last condition, the following convergence
result is valid:

13



Theorem 6. If [°°\/F(t)(1 — F(t))dt < 400 then

/_:O VN ‘% ﬁ: X (oot} (§2) = F(t)’ dt —q /_:OIU(F(t))!dt (15)

The convergence results for some “representative” distributions are illustrated. Further-
more, to extend the results, we focus not only on the independent case but also on the
case of weakly dependent data. For simplicity we are not going in depth and choose most
simple variant of dependency, M-dependent sequences.

Definition 10. Let {&}2 be a random sequence defined on the probability space (€2, .4, P).
Let, moreover, B(—o0, a) be the o-algebra generated by ..., &, 1,&,, and B(b, +00) be the
o-algebra generated by &, &41, - . .. The sequence is said to be M-dependent if B(—oo, a)
and B(b, +00) are independent for b —a > M.

We can prove by the techniques employed in Karikova [9] that the case of M-dependent
samples can be transformed to the independent one and the asymptotic results remain
valid.

Theorem 7. For every natural N there exists k € {0,1,...} andr € {1,..., M} such that
N =Mk+r, and

| F(t) |<Z | Fy (t) — F(t)], teR (16)

where Fy, are empirical distribution functions determined by sequences of N; independent
random variables, and

N — k+1 forj=1,...,r
A forg=r+1,...,M

The numerical study confirms the expected results: both Wasserstein and Kolmogorov
metrics vanish to zero as number of samples grows. It is true even for cut Cauchy distribu-
tion representing a distribution with heavy tails. Convergence of Kolmogorov’s empirical
process’s is confirmed to be the same regardless the original distribution (even for Cauchy
distribution). For Wasserstein’s integrated empirical process, the rate of convergence is
stabilizing quickly in the case of the uniform, normal, and exponential distributions. The
problem of Cauchy distribution is easily justifiable: although cutting allowed us to use the
Wasserstein distance, numerical properties of the distance would to be hardly favourable.
The results with dependent data are seen to differ slightly but one can appreciated the
difference as not very important. As members of used MA(1) process are actually weakly
dependent, this behaviour is expected again.
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6 Convexity and structural dependence
in chance-constrained problems

In Chapter 6 of the thesi we focus our attention to a slightly modified formulation of
chance-constrained problem:

min ¢(z) subject to P{h(z;§) >0} >p (17)

where z € R", £ : 2 — R’ is a random vector with the distribution p and distribution
function F, ¢c: R® — R, h: R"® x R®* — R? and p € [0;1] is a prescribed probability level.
To emphasize importance of the value p in this chapter, we denote the constraint set as

M(p) := {z € R" : P{h(z;€)} > p}.

A matter of importance both in theoretical and practical applications of the chance-
constrained programming is to determine when the set M (p) of feasible solutions is convex.
It is trivially known that the sets M(0), M (1) are convex if h(-,&) are concave functions
for all £ € R®. Classical result of Prékopa (see Prékopa [11] for overview) states that if
w is absolutely continuous (with respect to Lebesgue measure), log-concave measure (or
r-concave with r > —1/s), and the one-dimensional components of h are quasi-concave
functions of (z,&) then M(p) is a convex set.

The quasi-concavity property is not preserved under addition. Considering a problem
with random right-hand side in the form

min c(x) subject to P{g(z) > £} > p, (18)

h defined as h(z; &) = g(x) — £ is quasi-concave if g(z) is concave. Recently, Henrion and
Strugarek [6] proposed an alternative approach to deal with this problem: their idea is
to relax concavity condition of g and make more stringent concavity condition on the
probability distribution .

Definition 11. A function ¢g: R" — (0;400) is called r-concave for some r € [—00; +o0]
if

1/r

gz + (1= Ny) > [Ag"(2) + (1 = N)g"(y)]
for all z,y € R™ and all A € [0;1]. Cases r = —00, 0, and 400 are treated by continuity.

Definition 12 (Henrion and Strugarek [6], Definition 2.2). A function f: R — R is called
r-decreasing for some r € R if it is continuous on (0;+00), and there exists a threshold
tx > 0 such that ¢" f(t) is strictly decreasing for all £ > tx.

Theorem 8 (Henrion and Strugarek [6], Theorem 3.1). If there exist r; > 0 such that
the components g; of g are (—r;)-concave, the components & of & have r; + 1-decreasing
densities, and the components &; of & are independently distributed, then M (p) is convex
for all p > p* := max; F;(t;) where F; denotes the distribution function of & and t} refer
to the definition of r; + 1-decreasing probability density.
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In the sequel we ask for the relaxation of the independence condition in Theorem 8. To
do this, we define an o/ coefficient of dependence by the following definition.

Definition 13. For a random vector £ we define a coefficient o’ of (weak) dependence as
o/ :=sup|F(z) — [ [ Fi(=)] (19)

where F'is the distribution function of the vector £, F; are the corresponding one-dimensional
marginal distribution functions and z = (21, ..., z,) € R*.

Denote M'(p) = {z € X : [[;_, Fi(¢:(z)) > p}. If the components &; of £ are indepen-
dently distributed, then M (p) = M’(p). This is not true in case of weak dependence, but
the following proposition is valid:

Proposition 9. If the components & of £ in (18) are a-dependent (in the sense of Defi-
nition 13) then
M'(p+a)Cc M(p)C M'(p—a) C M(p—2a). (20)

If p is sufficiently high, then possibly non-convex M (p) is bounded from both side by
convex sets and the following theorem is valid.

Theorem 10. If there exist r; > 0 such that the components g; of g are (—r;)-concave,
the components & of & have r; + 1-decreasing densities, the components & of & are a-
dependently distributed, and p > max; Fi(tf) + « (with t; and F; as in Theorem 8), then
M(p) is bounded (from both sides) by convex sets M'(p + «) and M'(p — «).

Under additional assumptions on objective and constraint functions, we can prove the
following theorem.

Theorem 11. Consider the problem (18) and let assumption 1—4 of Theorem 10 be fulfilled.
Further assume c to be Lipschitz continuous function on R", the mapping v — {y €
Rlz € M'(p+a—y)} be metrically regular at (Z'(p + «),0), and a-dependence coefficient
satisfyigng a < %5, where € is provided by metric reqularity condition. Then there exists a
constant L > 0 such that

¢/ (p+ @) = ()| < Lmax{0,p+a - [[ Fi(a:(@(p - a))} (21)

is fulfilled. Here, ¢(p), ¢'(p + «) are the optimal values, and T'(p — «), T'(p + «) are the
optimal solutions of the dependent and the independent problem respectively.

A simple example originating in Henrion and Strugarek [6] shows that for the chosen
normal distribution, convexity of the feasible set is assured theoretically at the probability
level of 0.921 for the independent case (the actual probability level seems to be around
the value of 0.7). For the weak dependent case, these tresholds (theoretical and actual) are
shifted towards the center of feasibility sets (center of image), and the optimal values and
optimal solutions remain stable as the value of a-coefficient is small.
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Figure 1: Contour lines for M’(p) (solid) and M (p) (dotted) sets

7 Chance-constrained problems and robust program-
ming approach

Techniques of robust programming have became a popular alternative to stochastic pro-
gramming during the last two decades. The robust programming handles the uncertainty
in an optimization model through the so-called “worst case” analysis: the constraints of
the general optimization model (1) are required to be satisfied for all possible realizations
of uncertainty parameter £, and we optimize the worst-case objective function among all
robust solutions. We consider the following “standardized” form of the uncertain convez
program:

minimize ¢z subject to € X, f(z;£) <0, (22)

where z € X C R", ¢ € R", and £ € £ C R® is a parameter (data) vector. We assume
further that X is convex and closed set, f: X x Z — R is convex in z for all £ € =, and =
is a prescribed set of instances. Without lost of generality, the objective function is linear
and the constraint function f is scalar-valued. If the realization of £ is known and fixed,
the problem (22) is deterministic convex program and we can use techniques of convex
programming to solve the problem.

Assuming that ¢ is a random vector defined on the probability space (£2,.4,P) with
known probability distribution u € P(Z), in chance-constrained program (PCP) we require
the constraints of (22) to be fulfilled with a prescribed level of probability 1—¢. The problem
reads

minimize ¢’z subject to z € X, :={z € X : p{{ € Z: f(z;¢) > 0} < ¢e}. (23)
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The problem (23) or its approximation need not to be convex even if f is convex in z for all
&, and to evaluate the probability in the definition of X, one often has to calculate values
of multidimensional integrals.

In robust programming approach, also known as ‘min-max’ or ‘worst-case’ approach, we
look for a solution which is feasible for all possible instances of &; this approach leads to
the robust convex problem (RCP):

min dx subject to f(z;&) < 0forall £ € =Z. (24)
S

The problem (24) is convex but it has an infinite number of constraints and so it is nume-
rically hard to solve. Another disadvantage of robust programming in its original form is
the fact that it allocate the same weight to all values of the parameter regardless possible
different importance of individual instances of &.

Consider a set of independent samples &1, . . ., £y distributed according to pu, the original
distribution of the parameter . The problem (23) is approximated, for the given sample,
by replacing the original probability distribution p by the empirical probability measure
1 associated with the empirical distribution function Fly, and then the problem reads

iréi)r(lc’x subject to z € X[g, N] := {z € X; %Card{i; f(z;&) >0} <e} (25)
where card denotes the cardinality of the argument. We refer to the problem (25) as
to the chance-constrained sampled problem (PCPy). The essential idea of (25) is that
the relative frequency of constraint violations corresponds to the desired upper level of
infeasibility in (23). (25) is the program with a single constraint and in some simple cases
it is computationally tractable.

Recently, Calafiore and Campi [2] proposed the following approximation to the robust
convex program (24) by the following robust sampled convez problem (SCPy):

min ¢’z subject to X[N]:= {z € X; f(2;&) <0fori=1,...,N}. (26)

zeX

This is a relaxation of the original robust convex problem: we do not require the original
constraints to be satisfied for all realizations of & € = but only for a certain finite but
sufficiently large number of samples which are moreover the most probable to happen.
Calafiore and Campi [1] found a rule to set up N in order to have the optimal solution of
(26) feasible in (23). The problem is convex, it has a finite number of constraints and it
is effectively computable. In addition, it incorporates weights to the individual parameter
instances of ¢ and these are such that are most probable to happen.

The two mentioned approaches to solve uncertain convex program are based on a dif-
ferent “philosophy” how to understand the uncertainty. Consider the following uncertain
convex program

minimize x subject to x > &,z € R (27)
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Normal N(0;1) distribution, N=240
Normal N(0;1) distribution, N=30

Solution of PCP_N: dotted (left histogram), SCP_N: solid (right histogram)
Solution of PCP_N: dotted (left histogram), SCP_N: solid (right histogram)

Figure 2: Convergence of optimal values for (SCPy) and (PCPy)

where £ € R is distributed according to a standard normal distribution N(0; 1); We denote
I its distribution function. Further, we define the following deterministic programs

miﬂrglzv subject to z > F~1(1 —¢), (28)
TE

1
rggiﬂr@m subject to N card{i;z < &} < ¢, (29)
miﬂgm subject to x > max & (30)
Tre 1=1,...,

(28) is chance-constrained problem (PCP), (29) is sampled version of it (PCPy), and (30)
is robust sampled problem (SCPy). Normal distribution is defined on an unbounded set,
hence the missing robust program (RCP) is not well defined — there is no real solution
feasible to all the instances of &.

For each of the three above problems the optimal solution coincides with the lower
boundary of their feasibility sets. That is, the optimal solution of the chance-constrained
problem (PCP) related to (27) is 1 — ¢ quantile of F', the optimal solution of the chance-
constrained sampled problem (PCPy) is computed as the lowest from N samples which
are greater or equal to the 0.95 sample quantile, and the optimal solution to (SCPy) is the
highest of N samples considered.

To compare the approaches we set up ¢ = [ = 0.05. The optimal solution of (28),
marked by a small tickmark on z-axis, is approximately 1.64. The number of samples
assuring that the optimal solution of (SCPy) is 0.05-feasible with probability 0.95 is about
240. Thus, we consider three values of the sample size N = 30, 240, 3000, representing low,
“accurate”, and large sample size.
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The optimal solution of the chance-constrained sampled problem (29) converges, as N
goes to infinity, to the solution of (28) (marked by the tickmark). The sampling method
related to (25) is useful especially if the number N of samples is high, as a possible error
in estimating optimal solution of the chance-constrained problem (23) decreases. On the
other hand, the robustly sampled optimal solutions of (30) (solid histograms) are getting
away from the point of the optimal solution of (PCP) as far as the number of samples
increases, and are going to the upper boundary of the support of F' (i.e. to the infinity in
both of our cases), but with rapidly decreasing rate. If N is greater than 241, the optimal
value of the (SCPy) program is feasible in (PCP) with probability of 0.95.

The presented approaches exhibit very different numerical results. The models of sto-
chastic programming have in common that we estimate the probability distribution by me-
ans of observations from the past. The resulting solution in (PCP ) is an approximation to
the (unknown) solution of (PCP) and the approximation is better as the number of samples
(observations) is higher. Furthermore, our solution of the chance-constrained “sampled”
problem is only approximatively e-feasible for a given level e. On the other hand, this
level is usually not crucial for real applications if our preferences are pointed towards costs
saving solutions.

The optimal solutions to robust problems hedge against the worst-case realization of
uncertain parameters regardless their “importance”. The randomized (sampled) approach
incorporate the information about importance to the model via probability distribution of
samples so that the optimal solution of the sampled problem does not have to satisfy the
constraints for all possible realizations of the parameter. At the same time, the probability
of such violation is small and for a given ¢ one could easily compute the number of samples
to generate in order to obtain an e-feasible solution. Indeed, if the number of samples is
significantly greater than required, the optimal solution of the sampled problem also hedges
against the parameters with the smaller probability of occurrence. This could be the task
if the risk of constraint violation has to be minimized as much as possible and costs of
doing that are of smaller importance.

Choosing the approximation method to an uncertain convex program is ambiguous.
The selected method has to fill up the needs of practical dimension of the problem:

e how much the probability of violation of the constraints is crucial,
e how many samples one has at disposition or can generate.

Getting an answer to the first question stronger, one’s preferences have to be directed
towards the robust sampled problems. On the other hand the solution of the stochastic
program could be useful in cases where the 1 — ¢ level is not crucial and our preferences
are pointed more likely towards costs savings solutions.
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